

# Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance

## Jingwei Zuo

Lead Researcher @Falcon LLM team
Artificial Intelligence Research Center
Technology Innovation Institute

ASAP Seminar

Sep 05, 2025 Online

## **Falcon Model Series**

- Open-source commitment
- 2023: Falcon 7B, 40B, 180B
- 2024.05: Falcon2-11B
- 2024.08: Falcon Mamba 7B
- 2024.12: Falcon 3
- 2025.05: Falcon-H1, Falcon-Edge (BitNet), Falcon-Arabic









## **Outline**

- Context
- 2. Architecture design and decision
- 3. Training details
- 4. Evaluation (highlights and intuitions)
- 5. General discussions

### Context



2024.08

- o Mamba1 design
- Untouched model design except the RMSNorm for training stability
- 5.5T token training budget
- Strong base SSM to surpass leading Transformer models such as LLama3.1, Mistral 7B, Gemma 9B.
- o 8K context



2024.12

- o Mamba1 design
- Untouched model design except the RMSNorm for training stability
- 1.5T token training budget for CPT on Falcon Mamba
- Competitive with hybrid models (Zamba2-7B, Jamba 1.5-mini)
- 32k context, enhanced STEM capabilities



2025.05

- Parallel hybrid attention-Mamba2
- Revisited every aspect of model design, data and training strategy.
- Outperforms and rivals SoTA LLMs (Qwen3, Gemma3, LLama3/4, Mistral3.1) at each scale (non-reasoning).
- Strong open-source community and industry engagement
- Fully production-ready: 0.5B to 34B

From Falcon Mamba, Falcon3 mamba to Falcon-H1

## **Hybrid Design/Models** – Glance on the literature

```
2024.3 O Jamba (52B-A12B, 398B-A94B)
2024.5 O Zamba (7B)
2024.6 • Samba (3.8B)
2024.11 O Hymba (1.5B)
2024.12 O MiniMax-Text-01 (456B-A46B)
2025.3 O Hunyuan-TurboS

    Nemotron-H (8B, 47B, 56B)

      o Falcon-H1 (0.5B, 1.5B, 1.5B-Deep, 3B, 7B, 34B)
       o Granite 4.0-tiny-preview (7B-A1B)

    Phi-4-mini-flash-reasoning (3.8B)

2025.7
       o Nemotron-Nano-v2 (9B, 12B), Jet-Nemotron (2B, 4B)
2025.8
       (Non-exhaustive list) Non open weight
```

## **Hybrid Design** - Channel Allocation

Fully parallel (SAM), semi-parallel (SA\_M), fully sequential (S\_A\_M)

$$\mathtt{SAM:} \quad \mathbf{r}_{l+1} = \mathbf{r}_l + \mathcal{F}_l^{\mathrm{MLP}}(\mathcal{N}_l(\mathbf{r}_l)) + \mathcal{F}_l^{\mathrm{attn}}(\mathcal{N}_l(\mathbf{r}_l)) + \mathcal{F}_l^{\mathrm{SSM}}(\mathcal{N}_l(\mathbf{r}_l))$$

$$\mathtt{SA\_M:} \quad \mathbf{r}_{l+1} = \mathbf{r}_l' + \mathcal{F}_l^{\mathrm{MLP}}(\mathcal{N}_l'(\mathbf{r}_l')), \quad \mathbf{r}_l' = \mathbf{r}_l + \mathcal{F}_l^{\mathrm{attn}}(\mathcal{N}_l(\mathbf{r}_l)) + \mathcal{F}_l^{\mathrm{SSM}}(\mathcal{N}_l(\mathbf{r}_l))$$

$$\mathtt{S\_A\_M:} \quad \mathbf{r}_{l+1} = \mathbf{r}_l'' + \mathcal{F}_l^{\mathrm{MLP}}(\mathcal{N}_l''(\mathbf{r}_l'')), \quad \mathbf{r}_l'' = \mathbf{r}_l' + \mathcal{F}_l^{\mathrm{attn}}(\mathcal{N}_l'(\mathbf{r}_l')), \quad \mathbf{r}_l' = \mathbf{r}_l + \mathcal{F}_l^{\mathrm{SSM}}(\mathcal{N}_l(\mathbf{r}_l))$$





Fixed  $\alpha_A = \frac{1}{8}$ 

6/8

5/8

## **SSM Module -** State Size VS Num Groups

- o Revisiting every aspect of the architecture: state size groups head dimensions convolution chunk size ...
- o 2 metrics: Accuracy and efficiency



Figure 3: Hyperparameter optimization landscapes for SSM number of groups and state dimension size. (a) Loss surface showing performance relative to global minimum across number of groups and d\_state size. (b) Relative throughput surface as fraction of maximum performance. Dashed lines indicate iso-parameter curves ( $ng \times ds = constant$ ), implying constant total parameter count. Red stars mark optimal configurations for each computational budget, revealing distinct trade-offs between model quality and efficiency.

TII – Technology Innovation Institute

## SSM Module - Head Dim, Conv Dim

- o Revisiting every aspect of the architecture: state size groups head dimensions convolution chunk size ...
- 2 metrics: Accuracy and efficiency



#### **Loss and Efficiency vs Convolution Dimension**



## **SSM Module –** Hidden State Resetting

- Long context data (packing): semantic contamination between unrelated contexts
- Attention: cross-document masking (block-diagonal mask)
- SSM (recurrent models)?

$$\mathbf{h}_{t+1} = \overline{A}_t \, \mathbf{h}_t + \mathbf{B}_t dt_t x_t, \qquad y_t = \mathbf{C}_t^\top \, \mathbf{h}_t + D x_t.$$

$$\bar{A}_i = \exp[-e^{A_{\log}} \tilde{d}t_i + r_i \cdot (-80)] \approx \begin{cases} \mathbf{0}, & r_i = 1, \\ \bar{A}, & r_i = 0. \end{cases}$$

At a boundary 
$$\mathbf{h}_{t+1} = \mathbf{0} \cdot \mathbf{h}_t + \bar{B} \, x_t = \bar{B} \, x_t$$

\*  $\exp(-80) \approx 1e-35 \gg 1e-45$ (FP16/BF16 underflow threshold)



## **Attention Module** – RoPE theta

1e11 – optimal value  $\gg$  1e6 or 1e7 (commonly used)

Open questions: e.g., large RoPE theta – will it work for sequential Hybrid or transformer models?



10 TII - Technology Innovation Institute AI Cross Unit Res

## **Beyond hybrid design**: Width–Depth Trade-offs

Joint sweeps over hidden width and depth, scaling LR inversely with width (μP scaling)

W1536L87, W1792L63, W2048L48, W2304L37, and W2560L30

The deep version even matched/outperformed 3B and 7B checkpoints

Also seen in GLM4.5: deeper design vs DS-V3 and Kimi K2

Release two 1.5B versions

- o Falcon-H1-1.5B (24 layers)
- o Falcon-H1-1.5B-Deep (66 layers)



## Falcon-H1: Final Architecture



| Model               | Params (B) | Layers | # Vocab    | $oldsymbol{d}_{	ext{model}}$ | Heads $(Q/KV, SSM)$ | $\boldsymbol{d}_{\mathrm{head}} \ (\mathrm{Attn/SSM})$ | $oldsymbol{d}_{	ext{state}}$ | Context Len. | # Tokens             |
|---------------------|------------|--------|------------|------------------------------|---------------------|--------------------------------------------------------|------------------------------|--------------|----------------------|
| Falcon-H1-0.5B      | 0.52       | 36     | 32,778     | 1024                         | 8/2, 24             | 64/64                                                  | 128                          | 16K          | $2.5\mathrm{T}$      |
| Falcon-H1-1.5B      | 1.55       | 24     | $65,\!536$ | 2048                         | 8/2, 48             | 128/64                                                 | 256                          | 128K         | 3T                   |
| Falcon-H1-1.5B-Deep | 1.55       | 66     | $65,\!536$ | 1280                         | 6/2, 24             | 128/64                                                 | 256                          | 128K         | 3T                   |
| Falcon-H1-3B        | 3.15       | 32     | $65,\!536$ | 2560                         | 10/2, 32            | 128/128                                                | 256                          | 128K         | $2.5\mathrm{T}$      |
| Falcon-H1-7B        | 7.59       | 44     | 130,048    | 3072                         | 12/2, 24            | 128/128                                                | 256                          | 256K         | $\sim 12 \mathrm{T}$ |
| Falcon-H1-34B       | 33.6       | 72     | 261,120    | 5120                         | 20/4, 32            | 128/128                                                | 256                          | 256K         | ~18T                 |

# **Training Dynamics** – Spikes removal and μP

High learning rates/Bigger models -> Systematic Spikes

#### **Constraints**

- Can not go for high learning rates -> Disables an interesting Hyperparameters area
- Spikey runs tend to have worst loss -> Hard to compare ablation runs

#### Solution

 $\circ$  Dampening dt works the best: add small  $\mu P$  multiplier to dt-activation

#### μP with tunable multipliers

- 35 multipliers
- 10 stages of iterative optimization
- o 500+ runs

| Propengamenters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | u | .1                    |      |      |      |      |      |      |      |      |      |      | ssm dt                | -1 | -2 | -3 | -2   | -1   | -1.5 | -0.5 | -0.5 | -1.5 | -1.5 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----------------------|------|------|------|------|------|------|------|------|------|------|-----------------------|----|----|----|------|------|------|------|------|------|------|
| Constitution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                       |      |      |      |      |      |      |      |      |      |      | ssm gate              | 0  | -2 | 0  | -1   | Ō    | -1   | -1   | -1   | -1.5 | -1.5 |
| March size of the control of the c |   | Hyperparameters       | S1   | S2   | S3   | S4   | S5   | S6   | S7   | S8   | S9   | S10  | attn key              | -2 | -2 | -3 | -2   | -2.5 | -2.5 | -2   | -2   | -2   | -2   |
| Participation   Cit    |   | const stage duration  | 5GT* | 25GT | 25GT | 25GT | 65GT | 65GT | 65GT | 65GT | 65GT | 65GT | lr                    | 0  | 0  | 0  | -0.5 | -1.5 | -0.5 | -1   | -1   | -0.5 | -0.5 |
| Death sizes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | decay stage duration  | 0GT  | 5GT  | 5GT  | 5GT  | 10GT | 10GT | 10GT | 10GT | 10GT | 10GT | wd                    | 0  | 0  | 0  | 0.5  | 0.5  | 0.5  | 1    | 1    | 0.5  | 0.5  |
| First   S.12   S.13   |   | rampup duration       | GT   | MLP out mits          |    |    |    |      |      |      |      |      |      |      |
| March   Marc |   | batch sizes           | 4M   | 16M  | mlp out               | 0  | 0  | -2 | -1   | -1   | -1   | -1   | -1   | -2   | -2   |
| Embedding multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | lr .                  | 5.12 | 5.12 | 5.12 | 5.12 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | 2.56 | up_proj lr            | 0  | 0  | -1 | -1   | -2   | -1   | 0    | 0    | -0.5 | -0.5 |
| embedding out 6 6 6 5 4 3 3 3 2.5 2.5 down, project or 0 0 0 1 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | wd                    | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | 0.1  | up_proj wd            | 0  | 0  | 0  | 1    | 1    | 1    | 0    | 0    | -0.5 | -0.5 |
| If wid 0 0 0 2 1 1 1 1 1 1.5 1.5 2 1.5 MLP gate mits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | Embedding multipliers |      |      |      |      |      |      |      |      |      |      | down_proj lr          | 0  | 0  | -1 | -1   | -2   | -1   | -0.5 | -0.5 | -0.5 | -0.5 |
| wd         0         0         0         1         1         1         1.5         1.5         2         2.5         mlp gate out         0         0         -1         -1         -1         -0.5         -0.5           Projector multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | embedding out         | 6    | 6    | 6    | 5    | 4    | 3    | 3    | 3    | 2.5  | 2.5  | down_proj wd          | 0  | 0  | 0  | 1    | 1    | 1    | -0.5 | -0.5 | -0.5 | -0.5 |
| Projector multipliers    Projector multipliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   | lr                    | 0    | 0    | 2    | 1    | 1    | 1    | 1.5  | 1.5  | 2    | 1.5  | MLP gate mits         |    |    |    |      |      |      |      |      |      |      |
| projector out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | wd                    | 0    | 0    | 0    | -1   | -1   | -1   | -1.5 | -1.5 | -2   | -2.5 | mlp gate out          | 0  | 0  | -1 | -2   | -1.5 | -1.5 | -1   | -1   | -0.5 | -0.5 |
| No.   No.  |   | Projector multipliers |      |      |      |      |      |      |      |      |      |      | gate_proj lr          | 0  | 0  | 0  | -0.5 | -0.5 | 0    | 1    | 1    | 0.5  | 0.5  |
| wd 0 0 0 1 1 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | projector out         | -2   | -2   | -3   | -3   | -3.5 | -3.5 | -4.5 | -4.5 | -5   | -5   | gate_proj wd          | 0  | 0  | 0  | 0.5  | -0.5 | -0.5 | -0.5 | -0.5 | 0    | 0    |
| mixer out_proj mits  Sem out  O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | Ir                    | 0    | 0    | 0    | -1   | -2   | -1.5 | -0.5 | -0.5 | 0    | 0    | RMS norms ir mits     |    |    |    |      |      |      |      |      |      |      |
| ssm out 0 0 0 2 3 2 3 2 2 2 2.5 2.5 2.5 1.5 norm_gate (mip gate) 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 atn out 0 0 2 2 2 2 2 1 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   | wd                    | 0    | 0    | 0    | 1    | 1    | 0.5  | -0.5 | -0.5 | -2   | -2   | norm (ssm+attn)       | 0  | 0  | 0  | 0    | 1    | 2    | 2    | 2    | 2    | 2    |
| attn out 0 0 0 -2 -2 -2 -1 -1.5 -1.5 -1 -1 norm_1 (projector) 0 0 0 0 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | mixer out_proj mlts   |      |      |      |      |      |      |      |      |      |      | norm2 (mlp)           | 0  | 0  | 0  | 0    | 1    | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  |
| Ir         0         0         -1         -0.5         -1.5         -2         -2.5         -2.5         -2.5         -2.5         -2         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5         -2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | ssm out               | 0    | 0    | -2   | -3   | -2   | -2   | -2.5 | -2.5 | -2.5 | -1.5 | norm_gate (mlp gate)  | 0  | 0  | 0  | 0    | 1    | 1    | 1    | 1    | 1    | 1    |
| wd 0 0 0 0.5 1.5 2 2.5 2.5 2 2 convid.weight 0 0 0 1 2 2 3 3 2.5 2.5 2.5 2 2 mixer in_proj mits 0 0 0 -1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | attn out              | 0    | 0    | -2   | -2   | -2   | -1   | -1.5 | -1.5 | -1   | -1   | norm_f (projector)    | 0  | 0  | 0  | 0    | 1    | 1.5  | 1.5  | 1.5  | 1.5  | 1.5  |
| mixer in_proj mits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | Ir                    | 0    | 0    | -1   | -0.5 | -1.5 | -2   | -2.5 | -2.5 | -2   | -2   | SSM bias-like Ir mlts |    |    |    |      |      |      |      |      |      |      |
| ssmx     0     -2     0     -1     -1     -1.5     -1.5     -2     -2     d.Dias     0     0     0     0     1     1     2     2     1.5     1.5       ssmB     -2     -2     -4     -3     -2     -2     -1     -1     -1.5     -1.5     A.Jog     0     0     0     0     1     1.5     2     2     1.5     1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | wd                    | 0    | 0    | 0    | 0.5  | 1.5  | 2    | 2.5  | 2.5  | 2    | 2    | conv1d.weight         | 0  | 0  | 0  | 1    | 2    | 2    | 3    | 3    | 2.5  | 2.5  |
| ssm B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | mixer in_proj mlts    |      |      |      |      |      |      |      |      |      |      | conv1d.bias           | 0  | 0  | 0  | 0    | 1    | 1    | 2    | 2    | 1    | 1    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ssm x                 | 0    | -2   | 0    | -1   | -1   | -1.5 | -1.5 | -1.5 | -2   | -2   | dt.bias               | 0  | 0  | 0  | 0    | 1    | 1    | 2    | 2    | 1.5  | 1.5  |
| ssmC 0 0 0 0 0 0 0 0 1 1 2 2 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   | ssm B                 | -2   | -2   | -4   | -3   | -2   | -2   | -1   | -1   | -1.5 | -1.5 | A_log                 | 0  | 0  | 0  | 0    | 1    | 1.5  | 2    | 2    | 1.5  | 1.5  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ssm C                 | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | -1   | D                     | 0  | 0  | 0  | 0    | 1    | 1    | 2    | 2    | 3    | 3    |

## **Pretraining Infrastructure**

- 4096 H100s, in-house training framework with 5D Parallelism.
- Redesigned Context Parallelism (CP) for hybrid attention-mamba2
- Innovative Mixer Parallelism (MP) for parallel attention and SSM heads

| Models                      | Batch Size    | Context Len. Stage          | DP  | TP | PP | CP | MP           |
|-----------------------------|---------------|-----------------------------|-----|----|----|----|--------------|
| Falcon-H1-0.5B              | 4M            | 4K, 16K                     | 64  | 1  | 1  | 1  | X            |
| Falcon-H1-1.5B (1.5B-Deep)  | $4\mathrm{M}$ | $16\mathrm{K},32\mathrm{K}$ | 256 | 1  | 1  | 1  | X            |
| Talcon III 1.0D (1.0D Deep) | 1111          | 131K                        | 64  | 1  | 1  | 4  | ×            |
| Falcon-H1-3B                | 8M            | 16K, 32K                    | 256 | 1  | 1  | 1  | X            |
| raicoii-III-3D              | OIVI          | 131K                        | 64  | 1  | 1  | 4  | X            |
|                             |               | 16K, 32K                    | 256 | 2  | 1  | 1  | ✓            |
| Falcon-H1-7B                | 8M            | 131K                        | 128 | 2  | 1  | 4  | $\checkmark$ |
|                             |               | 262K                        | 64  | 2  | 1  | 8  | ✓            |
|                             |               | 16K                         | 448 | 4  | 2  | 1  | <b>√</b>     |
| Falcon-H1-34B               | 26M           | 32K                         | 192 | 4  | 2  | 2  | $\checkmark$ |
| raicon-111-34B              | 20101         | 131K                        | 48  | 4  | 2  | 8  | $\checkmark$ |
|                             |               | 262K                        | 24  | 4  | 2  | 16 | ✓            |

## **Pretraining Infrastructure** – Mixer Parallelism (MP)

- Parallel-head hybrid models with TP-repartitioning
  - Optimized for training/inference efficiency
  - Balanced distribution of computational and memory overhead
- Improved memory utilization compared to sequential hybrid designs.



| MP Variant      | Throughput (Gtok/hr) | Speedup (ratio) |
|-----------------|----------------------|-----------------|
| None (Baseline) | 0.2339               | 1.00            |
| Naive MP        | 0.2640               | 1.13            |
| Interleaved MP  | 0.3343               | 1.43            |

Training Efficiency with MP (2B model)

#### VLLM Benchmark: Throughput vs. Batch Size



Inference Efficiency with MP

## Falcon-H1: Data & Data strategy

#### Tokenizer: falcon-world

- Trained on 100+ languages
- English-only version available
- Beating GPT-4o, Qwen2.5, Mistral, Llama3 tokenizers

| Tokenizer name    | Vocabulary size | Model                                        |
|-------------------|-----------------|----------------------------------------------|
| falcon-world-32k  | 32768           | tiiuae/Falcon-H1-0.5B*                       |
| falcon-world-65k  | 65536           | tiiuae/Falcon-H1-1.5B*, tiiuae/Falcon-H1-3B* |
| falcon-world-131k | 131048          | tiiuae/Falcon-H1-7B*                         |
| falcon-world-262k | 261120          | tiiuae/Falcon-H1-34B*                        |

## Falcon-H1: Data & Data strategy

#### Tokenizer: falcon-world

- Trained on 100+ languages
- English-only version available
- Beating GPT-4o, Qwen2.5, Mistral, Llama3 tokenizers

| Tokenizer name    | Vocabulary size | Model                                        |
|-------------------|-----------------|----------------------------------------------|
| falcon-world-32k  | 32768           | tiiuae/Falcon-H1-0.5B*                       |
| falcon-world-65k  | 65536           | tiiuae/Falcon-H1-1.5B*, tiiuae/Falcon-H1-3B* |
| falcon-world-131k | 131048          | tiiuae/Falcon-H1-7B*                         |
| falcon-world-262k | 261120          | tiiuae/Falcon-H1-34B*                        |

#### Training data (2.5T - 18T)

- Extensive explorations & processing
  - Validating every data source before injecting into training
  - Finding optimal data mixture at various scales
  - Optimal data format, synthetic data, data organization strategies, etc.

|                 | 3      | 84B    | ,      | 7B     | 3B     | 1.5B   | 0.5B   |
|-----------------|--------|--------|--------|--------|--------|--------|--------|
| Data Source     | Start  | End    | Start  | End    | Mix    | Mix    | Mix    |
| Raw data        | 99.47  | 43.45  | 81.07  | 42.26  | 39.70  | 23.20  | 11.50  |
| Web             | 40.00  | 14.60  | 25.00  | 12.35  | 11.60  | 10.20  | 6.50   |
| Curated         | 25.00  | 15.93  | 26.00  | 16.47  | 11.68  | 4.75   | 0.00   |
| Code            | 20.00  | 10.05  | 20.00  | 10.74  | 14.00  | 8.00   | 5.00   |
| Math            | 14.47  | 2.87   | 10.07  | 2.70   | 2.42   | 0.25   | 0.00   |
| Rewritten data  | 0.23   | 52.05  | 10.56  | 53.04  | 56.80  | 69.80  | 75.50  |
| Web & Curated   | 0.00   | 20.36  | 0.00   | 18.12  | 22.08  | 23.75  | 20.50  |
| Code & Math     | 0.23   | 31.69  | 10.56  | 34.92  | 34.72  | 46.05  | 55.00  |
| Synthetic data* | 0.30   | 4.50   | 8.37   | 4.70   | 3.50   | 7.00   | 13.00  |
| Total           | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |

<sup>\*</sup> Fully synthetic samples, not derived from rewriting existing raw data.

## **Falcon-H1:** Data & Data strategy

#### Tokenizer: falcon-world

- Trained on 100+ languages
- English-only version available
- Beating GPT-40, Qwen2.5, Mistral, Llama3 tokenizers

|  | Trainin | g data | (2.5T $-$ | - 18T) |
|--|---------|--------|-----------|--------|
|--|---------|--------|-----------|--------|

- Extensive explorations & processing
  - Validating every data source before injecting into training
  - Finding optimal data mixture at various scales
  - Optimal data format, synthetic data, data organization strategies, etc.

### Data strategies

- Multi-epoch training, model memorization and forgetting window, dynamic mixture on-the-fly, etc.
- Anti-curriculum learning in pre-training
- 16K context pretraining, extension to up-to 256K ...

| Tokenizer name    | Vocabulary size | Model                                        |
|-------------------|-----------------|----------------------------------------------|
| falcon-world-32k  | 32768           | tiiuae/Falcon-H1-0.5B*                       |
| falcon-world-65k  | 65536           | tiiuae/Falcon-H1-1.5B*, tiiuae/Falcon-H1-3B* |
| falcon-world-131k | 131048          | tiiuae/Falcon-H1-7B*                         |
| falcon-world-262k | 261120          | tiiuae/Falcon-H1-34B*                        |

4790

4794

Training time, GT



4798

1.92

4790

4792

4794

Training time, GT

4800

normal run 100GT rollback

4796

4796

Token seen at x-100GT

4798

normal run - 1TT rollback

···· Token seen at x-1TT

4798

4800

TII - Technology Innovation Institute Al Cross Unit Research Center

## **Evaluation** – During Training

- Frequent benchmark evaluations to capture better signals
- Frequent vibe checks on intermediate checkpoints, to avoid unintended specialization or domain biases



# **Evaluation** – Final Results (Instruct)





Instruct following (IFEval, MTBench)

Science et al.







TII - Technology Innovation Institute

Falcon-H1 - Qwen3 - Qwen2.5 - Llama3 - Gemma3 - Falcon3

## **Evaluation** – Final Results (Instruct)



- Recent models have shifted their strengths toward math- and reasoning-intensive tasks, while sacrificing performance on general and knowledge-intensive tasks
- Model comparisons beyond architecture Data mixture matters business use cases, model positioning, and real-world deployment scenarios, etc.

## **Evaluation** – Long Context Results

#### Falcon-H1-34B-Instruct

- Shines on RAG tasks
- o On Recall, longQA tasks, outperforms Qwen2.5-72B ,but lag behind Qwen3-32B and Llama-3.3-70B (beyond 32k)

| Seq. Length  | Falcon-H1-<br>34B-Instruct | $\begin{array}{c} {\rm Qwen 2.5\text{-}72B\text{-}} \\ {\rm Instruct} \end{array}$ | $\begin{array}{c} {\rm Qwen 3-} \\ {\rm 32B} \end{array}$ | Llama-3.3-70B-<br>Instruct |
|--------------|----------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|
| HELMET-RAG   |                            |                                                                                    |                                                           |                            |
| 8k           | 72.17                      | 72.21                                                                              | 69.25                                                     | 74.29                      |
| 16k          | 81.46                      | 80.42                                                                              | 77.92                                                     | 82.33                      |
| 32k          | 67.96                      | 70.08                                                                              | 64.83                                                     | 70.21                      |
| 65k          | 67.08                      | 63.25                                                                              | 61.96                                                     | 69.08                      |
| 131k         | 62.21                      | 42.33                                                                              | <u>57.08</u>                                              | 55.38                      |
| HELMET-Recal | 1                          |                                                                                    |                                                           |                            |
| 8k           | 100.00                     | 100.00                                                                             | 100.00                                                    | 100.00                     |
| 16k          | 100.00                     | 100.00                                                                             | 100.00                                                    | 100.00                     |
| 32k          | 97.50                      | 98.38                                                                              | 100.00                                                    | 99.63                      |
| 65k          | 80.69                      | 71.75                                                                              | 96.50                                                     | 98.81                      |
| 131k         | 56.63                      | 38.81                                                                              | 86.13                                                     | 82.19                      |
| HELMET-longQ | )A                         |                                                                                    |                                                           |                            |
| 8k           | 32.87                      | 35.20                                                                              | 31.63                                                     | 33.67                      |
| 16k          | 34.64                      | <u>39.13</u>                                                                       | 35.68                                                     | 39.75                      |
| 32k          | 35.09                      | 39.22                                                                              | 41.15                                                     | 47.53                      |
| 65k          | 32.45                      | 36.71                                                                              | 47.47                                                     | 48.57                      |
| 131k         | 33.81                      | 32.94                                                                              | 53.52                                                     | 46.06                      |

Long context benchmarking on Helmet, check full results in Falcon-H1's tech report

## **Evaluation** – Model Efficiency

#### Falcon-H1-34B VS Qwen2.5 32B

- o Prefill test: Input seq\_len (2k to 262k), output 2k (batch\_size 32) -> up to 4x speedup
- Generation test: Input 4k (batch\_size 32), output seq\_len (2k to 262k) -> up to 8x speedup



## **Evaluation Results** – Model Depth Wins

#### Falcon-H1-1.5B

o SoTA 1B-scale model to date

#### Falcon-H1-1.5B-Deep

 Matches or surpasses Qwen2.5-7B across most benchmarks (check tech report)

| Tasks              | Falcon-H1-<br>1.5B-Deep | Falcon-H1-<br>1.5B | Qwen3-<br>1.7B | Qwen2.5-<br>1.5B | Gemma3-<br>1B | Llama3.2-<br>1B | Falcon3<br>1.6B |
|--------------------|-------------------------|--------------------|----------------|------------------|---------------|-----------------|-----------------|
| General            |                         |                    |                |                  |               |                 |                 |
| BBH                | 54.43                   | 46.47              | 35.18          | 42.41            | 35.86         | 33.21           | 34.47           |
| ARC-C              | 43.86                   | 42.06              | 34.81          | 40.53            | 34.13         | 34.64           | 43.09           |
| TruthfulQA         | 50.48                   | 49.39              | 45.98          | 47.05            | 42.17         | 42.08           | 42.31           |
| HellaSwag          | 65.54                   | 63.33              | 49.27          | 62.23            | 42.24         | 55.30           | 58.53           |
| MMLU               | 66.11                   | 62.03              | 57.04          | 59.76            | 40.87         | 45.93           | 46.10           |
| Math               |                         |                    |                |                  |               |                 |                 |
| GSM8k              | 82.34                   | 74.98              | 69.83          | 57.47            | 42.38         | 44.28           | 44.05           |
| MATH-500           | 77.80                   | 74.00              | 73.00          | 48.40            | 45.40         | 13.20           | 19.80           |
| AMC-23             | 56.56                   | 46.09              | 43.59          | 24.06            | 19.22         | 7.19            | 6.87            |
| AIME-24            | 14.37                   | $\overline{12.50}$ | 11.25          | 2.29             | 0.42          | 1.46            | 0.41            |
| AIME-25            | 11.04                   | 9.58               | 8.12           | 1.25             | 1.25          | 0.00            | 0.21            |
| Science            |                         |                    |                |                  |               |                 |                 |
| GPQA               | 33.22                   | 26.34              | 27.68          | 26.26            | 28.19         | 26.59           | 26.76           |
| GPQA_Diamond       | 40.57                   | 35.19              | 33.33          | 25.59            | 21.55         | 25.08           | 31.31           |
| MMLU-Pro           | 41.89                   | 37.80              | 23.54          | 28.35            | 14.46         | 16.20           | 18.49           |
| MMLU-stem          | 67.30                   | 64.13              | 54.30          | 54.04            | 35.39         | 39.16           | 39.64           |
| Code               |                         |                    |                |                  |               |                 |                 |
| HumanEval          | 73.78                   | 68.29              | 67.68          | 56.10            | 40.85         | 34.15           | 22.56           |
| HumanEval+         | 68.90                   | 61.59              | 60.96          | 50.61            | 37.20         | 29.88           | 20.73           |
| MBPP               | 68.25                   | 64.81              | 58.73          | 64.81            | 57.67         | 33.60           | 20.63           |
| MBPP+              | 56.61                   | 56.35              | 49.74          | 56.08            | 50.00         | 29.37           | 17.20           |
| LiveCodeBench      | 23.87                   | 17.61              | 14.87          | 12.52            | 5.09          | 2.35            | 0.78            |
| CRUXEval           | 52.32                   | 39.57              | 18.88          | 34.76            | 12.70         | 0.06            | 15.58           |
| Instruction Follov | ving                    |                    |                |                  |               |                 |                 |
| IFEval             | 83.50                   | 80.66              | 70.77          | 45.33            | 61.48         | 55.34           | 54.26           |
| Alpaca-Eval        | 27.12                   | 28.18              | 21.89          | 9.54             | 17.87         | 9.38            | 6.98            |
| MTBench            | 8.53                    | 8.46               | 7.61           | 7.10             | 7.03          | 6.37            | 6.03            |
| LiveBench          | <u>36.83</u>            | 34.13              | 40.73          | 21.65            | 18.79         | 14.97           | 14.10           |
| Multilingual       |                         |                    |                |                  |               |                 |                 |
| Multi-Hellaswag    | 53.14                   | 49.38              | 37.89          | 42.93            | 41.77         | 39.78           | 32.04           |
| Multi-MMLU         | 53.00                   | 48.06              | 39.60          | 45.90            | 34.91         | 35.24           | 32.25           |
| MGSM               | 60.00                   | 58.00              | 52.40          | 45.20            | -             | 29.73           | 15.33           |

## **Falcon-H1:** embracing the open-source ecosystem

#### Supported in most popular framworks

- General usage, fine-tuning, local/cloud deployment, quantization, etc
- More are on the way...



#### **General Discussions**

#### **Model Architecture**

- Sets the Lower Bound of model performance
- Defines key traits: efficiency, memory cost, etc.

#### **Data Mixture**

- Sets the Upper bound of model performance
- Much stronger impact than architecture once lower bound is guaranteed

#### **Anti-intuition Observations**

- Common practices, or research conclusions often valid only under narrow conditions
- Surprises in scaling, long context, broad validation
- Model performance shaped by interdependent factors → requires multi-dimensional optimization guided by experiences and exhaustive testing

## **General Discussions**

#### Future work

- Extend context beyond 256K
- o Inference optimization with vLLM, llama.cpp, MLX, SGLang, etc.
- Advance reasoning, coding, and agentic capabilities
- Improve token efficiency in training
- Enhance data: broader, more diverse, high-quality datasets
- o Etc.

## Thank you & Take aways

- Technical report <a href="https://arxiv.org/abs/2507.22448">https://arxiv.org/abs/2507.22448</a>
- o Github https://github.com/tijuae/falcon-h1
- Blogpost https://falcon-lm.github.io/blog/falcon-h1/
- HuggingFace collection <a href="https://huggingface.co/collections/tiiuae/falcon-h1-6819f2795bc406da60fab8df">https://huggingface.co/collections/tiiuae/falcon-h1-6819f2795bc406da60fab8df</a>



Falcon-H1 Family of Hybrid-Head Language Models (Transformer-SSM), including 0.5B, 1.5B, 1.5B-Deep, 3B, 7B, and 34B (pretrained & instruction-tuned).





2025-07-31

#### Falcon-H1: A Family of Hybrid-Head Language Models Redefining Efficiency and Performance

#### Falcon LLM Team



Abstract: In this report, we introduce Falcon-H1, a new series of large language models (LLMs) featuring novel hybrid architecture designs that are optimized for both high performance and efficiency across a broad spectrum of use cases. Unlike previous Falcon models, which were built solely on either Transformer or Mamba architectures, the Falcon-H1 series is based on a parallel hybrid architecture that combines the strengths of the Transformer-based attention mechanism with State Space Models (SSMs), known for their superior long-context memory and computational efficiency. We also systematically revisited nearly every aspect of model design, data strategy, and training dynamics—challenging several conventional practices in the domain. To support a wide range of deployment scenarios, the Falcon-H1 series is released in a rich set of configurations, including both base and instruction-tuned models at 0.5B, 1.5B, 1.5B-deep, 3B, 7B, and 34B parameter scales. Quantized versions of the instruction-tuned models are also available. In total, over 30 model checkpoints can be accessed via Hugging Face Hub.

Our comprehensive evaluations demonstrate that Falcon-H1 models consistently set new performance benchmarks through exceptional parameter and training efficiency. The flagship Falcon-H1-34B-Instruct rivals or outperforms leading models up to the 70B scale, such as Qwen3-32B, Qwen2.5-72B and Llama3.3-70B, despite being approximately half the size and trained on a frac-